
D R . M I G U E L Á N G E L O R O S H E R N Á N D E Z

Transaction processing

Agenda

Transaction
processing

Transaction properties

Recovery and serialization
algorithms

Transaction support in SQL

Concurrency control

Two phase blocking

Timestamps

Deferred and immediate
updates

Transacciones

 Conjunto de tareas que se ejecutan como una sola
unidad

 Propiedades ACID

 Resultados: éxito o fracaso

 Sentencias

 Begin transaction

 Rollback transaction

 Commit transaction

Transacciones
diagrama de estados

active

partially
committed

failed

committed

aborted

Agenda
Administración de transacciones

1. Definición de transacción

2. Propiedades de las transacciones

3. Tipos de transacciones

4. Beneficios de las transacciones

5. Algunos puntos sobre el procesamiento de
transacciones

6. Arquitectura revisada

Definición de transacción

Database consistency

 A database is in a consistency
state if it obeys all of the
consistency (integrity)
constraints defined over it

 State changes occur due to
modifications, insertions, and
deletions

 Objective: ensure that the
database never enters an
inconsistent state

Transaction consistency

 Refers to the actions of
concurrent transactions

 Objective: ensure the database
remains in a consistent state
even if there are a number of
user requests that are
concurrently accessing (reading
or updating) the databases

Definición de transacción

A transaction is a collection of
actions that make consistent
transformations of system states
while preserving system
consistency

 Concurrency transparency

 Failure transparency

Definición de transacción
transaction example – a simple SQL Query

begin transaction BUDGET_UPDATE

begin

UPDATE PROJ

SET BUDGET = BUDGET*1.1

WHERE PNAME = “ECOMMERCE”

end

Definición de transacción
example database: airline reservation and transaction example

FLIGHT(FNO, DATE, SRC, DEST, STSOLD, CAP)

CUST(CNAME, ADDR, BAL)

FC(FNO, DATE, CNAME, SPECIAL)

begin transaction Reservation

begin

input(fligh_no, date, customer_name)

UPDATE FLIGHT

SET STSOLD = STSOLD + 1

WHERE FNO = flight_no AND DATE = date

INSERT FC(FNO, DATE, CNAME, SPECIAL)

VALUES (flight_no, date, customer_name, null)

end {Reservation}

Definición de transacción
example of transaction – reads and writes

begin transaction Reservation

begin

input(flight_no, date, customer_name)

SELECT STSOLD as temp1, CAP INTO temp2

FROM FLIGHT

WHERE FNO = flight_no AND DATE = date

if temp1 = temp2 then

Abort

else

UPDATE FLIGHT SET STSOLD = STSOLD + 1

WHERE FNO = flight_no AND DATE = date

INSERT FC(FNO, DATE, CNAME, SPECIAL)

VALUES (flight_no, date, customer_name, null)

Commit

endif

end { Reservation }

Definición de transacción
termination of transactions

begin transaction Reservation

begin

input(flight_no, date, customer_name)

temp  Read(flight_no(date),stsold)

if temp = flight(date).cap then

output(“no free seats”)

Abort

else

Write(flight(date).stsold, temp + 1)

Write(flight(date).cname, customer_name)

Write(flight(date).special, null)

Commit

output(“reservation completed”)

endif

end { Reservation }

Definición de transacción
characterization

 Read set (𝑅𝑆)

The set of data items that are read by a transaction

 Write set (𝑊𝑆)

The set of data items that whose values are changed by this
transaction

 Base set (𝐵𝑆)
𝑅𝑆 ∪𝑊𝑆

Definición de transacción
characterization: example

𝑅𝑆 𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 = 𝐹𝐿𝐼𝐺𝐻𝑇. 𝑆𝑇𝑆𝑂𝐿𝐷, 𝐹𝐿𝐼𝐺𝐻𝑇. 𝐶𝐴𝑃

𝑊𝑆 𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 =
𝐹𝐿𝐼𝐺𝐻𝑇. 𝑆𝑇𝑆𝑂𝐿𝐷, 𝐹𝐿𝐼𝐺𝐻𝑇. 𝐹𝑁𝑂,

𝐹𝐶.𝐷𝐴𝑇𝐸,
𝐹𝐶. 𝐶𝑁𝐴𝑀𝐸, 𝐹𝐶. 𝑆𝑃𝐸𝐶𝐼𝐴𝐿

𝐵𝑆 𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 =
𝐹𝐿𝐼𝐺𝐻𝑇. 𝑆𝑇𝑆𝑂𝐿𝐷, 𝐹𝐿𝐼𝐺𝐻𝑇. 𝐶𝐴𝑃,
𝐹𝐶. 𝐹𝑁𝑂, 𝐹𝐶. 𝐷𝐴𝑇𝐸, 𝐹𝐶. 𝐶𝑁𝐴𝑀𝐸,

𝐹𝐶. 𝑆𝑃𝐸𝐶𝐼𝐴𝐿

Definición de transacción
formalization

 𝑂𝑖𝑗 𝑥 : operation 𝑂𝑗 of transaction 𝑇𝑖 that operates on a

database entity 𝑥
where

 𝑂𝑖𝑗 ∈ 𝑟𝑒𝑎𝑑,𝑤𝑟𝑖𝑡𝑒

 𝑂𝑗 is atomic (i.e. each is executed as an indivisible unit)

 𝑂𝑆𝑖: the set of all operations in 𝑇𝑖

𝑂𝑆𝑖 =ራ

𝑗

𝑂𝑖𝑗

 𝑁𝑖: the termination condition for 𝑇𝑖, where 𝑁𝑖 ∈
𝑎𝑏𝑜𝑟𝑡, 𝑐𝑜𝑚𝑚𝑖𝑡

Definición de transacción
formalization

Transaction Ti is a partial order Ti = {i, ≺i} where

 i = OSi  {Ni}

 For any two operations Oij , Oik  OSi , if Oij = R(x) and

Oik = W(x) for any data item x, then either Oij ≺i Oik or

Oik ≺i Oij

 Oij  OSi, Oij ≺i Ni

Definición de transacción
formalization: operations in conflict

Definición de transacción
formalization: example 1

Consider a transaction T:

Read(x)

Read(y)

x x + y

Write(x)

Commit

Then

= {R(x), R(y), W(x), C}

≺ = {(R(x), W(x)), (R(y), W(x)), (W(x), C), (R(x), C), (R(y), C)}

where

(𝑂𝑖 , 𝑂𝑗) as an element of the ≺ relation indicates that 𝑂𝑖≺𝑂𝑗

Definición de transacción
formalization: DAG representation

Assume

T= {R(x), R(y), W(x), C}

≺ = {(R(x), W(x)), (R(y), W(x)), (W(x), C), (R(x), C), (R(y), C)}

Direct Acyclic Graph (DAG)

R(x)

C

R(y)

W(x)

Definición de transacción
formalization: example 2: the reservation transaction

Propiedades de las transacciones

Propiedades de las transacciones
Atomicity

 Either all or none of the transaction's operations are
performed

 Atomicity requires that if a transaction is interrupted by a
failure, its partial results must be undone

 The activity of preserving the transaction's atomicity in
presence of transaction aborts due to input errors, system
overloads, or deadlocks is called transaction recovery

 The activity of ensuring atomicity in the presence of system
crashes is called crash recovery

Propiedades de las transacciones
Consistency

 Internal consistency

 A transaction which executes alone against a consistent
database leaves it in a consistent state

 Transactions do not violate database integrity constraints

 Transactions are correct programs

Propiedades de las transacciones
Consistency: consistency degrees

 Degree 0

 Transaction T does not overwrite dirty data of other
transactions

 Dirty data refers to data values that have been updated by
a transaction prior to its commitment

 Degree 1

 T does not overwrite dirty data of other transactions

 T does not commit any writes before End Of Transaction
(EOT)

Propiedades de las transacciones
Consistency: consistency degrees

 Degree 2

 T does not overwrite dirty data of other transactions

 T does not commit any writes before EOT

 T does not read dirty data from other transactions

 Degree 3

 T does not overwrite dirty data of other transactions

 T does not commit any writes before EOT

 T does not read dirty data from other transactions

 Other transactions do not dirty any data read by T before
T completes

Propiedades de las transacciones
Isolation

 Serializability

If several transactions are executed concurrently, the results
must be the same as if they were executed serially in some
order

 Incomplete results

 An incomplete transaction cannot reveal its results to other
transactions before its commitment

 Necessary to avoid cascading aborts

Propiedades de las transacciones
Isolation: example

T1: Read(x) T2: Read(x)
xx+1 x x+1
Write(x) Write(x)
Commit Commit

T1: Read(x) T1: Read(x)
T1: x x+1 T1: x x+1
T1: Write(x) T2: Read(x)
T1: Commit T1: Write(x)
T2: Read(x) T2: x x+1
T2: x x+1 T2: Write(x)
T2: Write(x) T1: Commit
T2: Commit T2: Commit

Consider the following two transactions:

Possible execution sequences:

Propiedades de las transacciones
Isolation: SQL-92 Isolation Levels

 Dirty read

T1 modifies x which is then read by T2 before T1 terminates

T1 aborts, T2 has read value which never exists in the database

 Non-repeatable (fuzzy) read

T1 reads x

T2 then modifies or deletes x and commits

T1 tries to read x again but reads a different value or can’t find it

 Phantom

T1 searches the database according to a predicate while T2 inserts new tuples
that satisfy the predicate

Propiedades de las transacciones
Isolation: SQL-92 Isolation Levels: Dirty Read

Propiedades de las transacciones
Isolation: SQL-92 Isolation Levels: Non-repeatable (fuzzy) read

Propiedades de las transacciones
Isolation: SQL-92 Isolation Levels: Phantom Read

Propiedades de las transacciones
Isolation: SQL-92 Isolation Levels

 Read Uncommitted

For transactions operating at this level, all three phenomena are
possible

 Read Committed

Fuzzy reads and phantoms are possible, but dirty reads are not

 Repeatable Read

Only phantoms possible

 Anomaly Serializable

None of the phenomena are possible

Propiedades de las transacciones
Isolation: SQL-92 Isolation Levels:Isolation Levels vs Read Phenomena

Propiedades de las transacciones
Dirty Read (Lost Update) Problem

 Reading uncommitted data – write-read conflicts

 Example
 T1 transfers $100 from one account to another

 T2 adds 6% to each account

Propiedades de las transacciones
Dirty Read (Lost Update) Problem

 Suppose Account X had 200 and Account Y had 100

 If T1 runs entirely before T2

 Account X transfers 100 to Account Y

 X=100 and Y=200

 Then T2 adds 6%  X=106 and Y=212

 X+Y=318

 If T2 runs entirely before T1

 T2 adds 6 %  X=212 and Y=106

 Account X transfers 100 to Account Y

 X=112 and Y=206

 X+Y=318

Propiedades de las transacciones
Dirty Read (Lost Update) Problem

 In our scenario

 After the first T1 operation, X=200, Y = 100

 T2 adds 6%  X=106, Y=106

 Then, T1 adds the 100 back into Y, X= 106, Y=206

 X+Y = 312

 Transaction T1 loses money!

Propiedades de las transacciones
Non-repeatable (Fuzzy) Read Problem

Propiedades de las transacciones
Phantom Reads: Read-Write conflicts

Propiedades de las transacciones
Overwriting Uncommited Data

 Employees x and y must maintain a consistent salary

 T1 sets both salaries to 4000/month and T2 sets both salaries to
5000/month

 Neither transaction reads their current salaries

Propiedades de las transacciones
Durability

 Once a transaction commits, the system must

guarantee that the results of its operations will

never be lost, in spite of subsequent failures

 In other words, once transaction commits, it is

permanent

 Transaction will survive subsequent failures

 Database recovery

Transaction architecture for Distributed DBMS

Need to add a Transaction Manager (TM) and a
Scheduler (SC)

 TM coordinates transactions for all applications

 SC implements specific concurrency algorithm for
synchronous access to databases

 Need local recovery managers to rollback
transactions

Transaction Managers
five commands

 Begin
 Set up new transaction

 Keep information useful in case a rollback occurs

 Read
 If the value is local, read it form the local site

 If not, select one site and read it from there

 Write
 Write value to all sites that stored the value

 Commit
 Coordinates all sites to inform them that the write from a transaction is

permanent

 Abort
 Coordinates all sites to inform them that all writes of a transaction must no be

permantently recorded

Tipos de transacciones

 Application areas

 Non-distributed vs.
distributed

 Compensating transactions

 Heterogeneous transactions

 Timing

 On-line (short-life) vs batch
(long-life)

 Organization of read and
write actions

 Two-step

 Restricted

 Action model

 Structure

 Flat (or simple) transactions

 Nested transactions

 Workflows

Tipos de transacciones

Tipos de transacciones
Examples

 General

 Two-step

 Restricted

Tipos de transacciones
Examples

 Two-step restricted

 Action

Tipos de transacciones
Transaction structure

 Flat transaction
 Consists of a sequence of primitive operations embraced between a begin

and end markers
begin_transaction Reservation

…

end.

 Nested transaction
 The operations of a transaction may themselves be transactions

begin_transaction Reservation

…

begin_transaction Airline

…

end. {Airline}

begin_transaction Hotel

…

end. {Hotel}

end. {Reservation}

Tipos de transacciones
Transaction structure: Nested transactions

 Have the same properties as their parents may themselves
have other nested transactions

 Introduces concurrency control and recovery concepts to
within the transaction

 Types

 Closed nesting

 Subtransactions begin after their parents and finish before them

 Commitment of a subtransaction is conditional upon the commitment of
the parent (commitment through the root)

 Open nesting

 Subtransactions can execute and commit independently

 Compensation may be necessary

Tipos de transacciones
Transaction structure: Workflows

 “A collection of tasks organized to accomplish some business process.”

 Types

 Human-oriented workflows

 Involve humans in performing the tasks

 System support for collaboration and coordination; but no system-wide consistency
definition

 System-oriented workflows

 Computation-intensive & specialized tasks that can be executed by a computer

 System support for concurrency control and recovery, automatic task execution,
notification, etc.

 Transactional workflows

 In between the previous two; may involve humans, require access to
heterogeneous, autonomous and/or distributed systems, and support selective use
of ACID properties

Tipos de transacciones
Transaction structure: Workflows example

Customer
database

Customer
database

Customer
database

T1 T2

T1: Customer request
obtained

T2: Airline reservation
performed

T3: Hotel reservation
perfomed

T4: Auto reservation
performed

T5: Bill generated

T4

T3

T5

Beneficios de las transacciones

 Atomic and reliable execution in the presence of
failures

 Correct execution in the presence of multiple user
accesses

 Correct management of replicas (if they support it)

Transacciones
ejemplo 1 …

USE pubs

DECLARE @intErrorCode INT

BEGIN TRAN

UPDATE Authors

SET Phone = '415 354-9866'

WHERE au_id = '724-80-9391'

SELECT @intErrorCode = @@ERROR

IF (@intErrorCode <> 0) GOTO PROBLEM

UPDATE Publishers

SET city = 'Córdoba', country = 'México'

WHERE pub_id = '9999'

Transacciones
… ejemplo 1

SELECT @intErrorCode = @@ERROR

IF (@intErrorCode <> 0) GOTO PROBLEM

COMMIT TRAN

PROBLEM:

IF (@intErrorCode <> 0)

BEGIN

PRINT '¡Ocurrió un error no previsto!'

ROLLBACK TRAN

END

Transacciones anidadas

 SQL Server permite anidar transacciones

Una nueva transacción puede empezar aún si la previa no ha
concluido

 @@TRANCOUNT

 Regresa el nivel de anidamiento; así, 0 = no anidación, 1 = un
nivel de anidamiento, …

 Comportamiento no simétrico entre el commit y el rollback

Transacciones anidadas
comportamiento del commit

Transacciones anidadas
comportamiento del rollback

Transacciones anidadas
ejemplo 2 …

USE bancaria

SELECT 'antes del BEGIN TRAN', @@TRANCOUNT

-- valor de @@TRANCOUNT = 0

BEGIN TRAN

SELECT 'Después BEGIN TRAN', @@TRANCOUNT

-- valor de @@TRANCOUNT = 1

DELETE deposit

BEGIN TRAN nested

SELECT 'Después BEGIN TRAN nested', @@TRANCOUNT

-- valor de @@TRANCOUNT = 2

DELETE borrow

COMMIT TRAN nested

-- decrementó de @@TRANCOUNT

Transacciones anidadas
… ejemplo 2

SELECT 'Después COMMIT TRAN nested', @@TRANCOUNT

-- valor de @@TRANCOUNT = 1

ROLLBACK TRAN

SELECT 'Después ROLLBACK TRAN', @@TRANCOUNT

-- valor de @@TRANCOUNT = 0

-- porque ROLLBACK TRAN siempre deshace todas las

-- transacciones y asigna 0 a @@TRANCOUNT

SELECT TOP 5 customer_name FROM deposit

Puntos de verificación
savepoints

 Mecanismo para deshacer porciones de transacciones

 Define una ubicación en la cual una transacción puede
regresar si una parte de la transacción es cancelada

 Uso de SAVE TRAN en SQL Server y no afecta
@@TRANCOUNT

 Un rollback hasta un savepoint (no a la transacción)
no afecta el valor de @@TRANCOUNT

Puntos de verificación
ejemplo …

USE bancaria

SELECT 'Before BEGIN TRAN main', @@TRANCOUNT

-- The value of @@TRANCOUNT is 0

BEGIN TRAN main

SELECT 'After BEGIN TRAN main', @@TRANCOUNT

-- The value of @@TRANCOUNT is 1

DELETE deposit

SAVE TRAN depositos -- Mark a save point

SELECT 'After SAVE TRAN depositos', @@TRANCOUNT

-- The value of @@TRANCOUNT is still 1

Puntos de verificación
… ejemplo …

BEGIN TRAN nested

SELECT 'After BEGIN TRAN nested', @@TRANCOUNT

-- The value of @@TRANCOUNT is 2

DELETE borrow

SAVE TRAN prestamos

-- Mark a save point

SELECT 'After SAVE TRAN prestamos', @@TRANCOUNT

-- The value of @@TRANCOUNT is still 2

ROLLBACK TRAN depositos

SELECT 'After ROLLBACK TRAN depositos', @@TRANCOUNT

Puntos de verificación
… ejemplo

-- The value of @@TRANCOUNT is still 2

SELECT TOP 5 customer_name FROM deposit

IF (@@TRANCOUNT > 0)

BEGIN

ROLLBACK TRAN

SELECT 'AFTER ROLLBACK TRAN', @@TRANCOUNT

/* The value of @@TRANCOUNT is 0 because

ROLLBACK TRAN always rolls back all transactions and

sets @@TRANCOUNT to 0 */

END

SELECT TOP 5 customer_name FROM deposit

Manejo de errores
@@ERROR

 id del último error

 Éxito  @@ERROR = 0

 Fracaso  @@ERROR > 0

 Para determinar si una sentencia se ejecuta
exitosamente, entonces es necesario verificar el valor
de @@ERROR inmediatamente después que dicha

sentencia se ejecutó

Manejo de errores
ejemplo 1 …

CREATE PROCEDURE addTitle(@title_id VARCHAR(6),

@au_id VARCHAR(11), @title VARCHAR(20),

@title_type CHAR(12))

AS

BEGIN TRAN

INSERT titles(title_id, title, type)

VALUES (@title_id, @title, @title_type)

IF (@@ERROR <> 0)

BEGIN

PRINT '¡Ocurrió un error no previsto!'

ROLLBACK TRAN

RETURN 1

END

Manejo de errores
… ejemplo 1

INSERT titleauthor(au_id, title_id)

VALUES (@au_id, @title_id)

IF (@@ERROR <> 0)

BEGIN

PRINT '¡Ocurrió un error no previsto!'

ROLLBACK TRAN

RETURN 1

END

COMMIT TRAN

RETURN 0

¿Problema?

Manejo de errores
ejemplo 2 …

CREATE PROCEDURE addTitle(@title_id VARCHAR(6),

@au_id VARCHAR(11), @title VARCHAR(20),

@title_type CHAR(12))

AS

BEGIN TRAN

INSERT titles(title_id, title, type)

VALUES (@title_id, @title, @title_type)

IF (@@ERROR <> 0) GOTO ERR_HANDLER

INSERT titleauthor(au_id, title_id)

VALUES (@au_id, @title_id)

IF (@@ERROR <> 0) GOTO ERR_HANDLER

Manejo de errores
… ejemplo 2 …

COMMIT TRAN

RETURN 0

ERR_HANDLER:

PRINT '¡Ocurrió un error no previsto!'

ROLLBACK TRAN

RETURN 1

Concurrencia, conflictos y schedules
Control de concurrencia

 The problem of synchronizing concurrent
transactions such that the consistency of the
database is maintained while, at the same time,
maximum degree of concurrency is achieved.

 Anomalies:

 Lost updates

 The effects of some transactions are not reflected on the database

 Inconsistent retrievals

 A transaction, if it reads the same data item more than once,
should always read the same value

Concurrencia, conflictos y schedules
Schedule (or execution history)

 An order in which the operations of a set of transactions
are executed

 A history (schedule) can be defined as a partial order over
the operations of a set of transactions

H1={W2(x),R1(x), R3(x),W1(x),C1,W2(y),R3(y),R2(z),C2,R3(z),C3}

T1: Read(x) T2: Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

Concurrencia, conflictos y schedules
Formalization of History

A complete history over a set of transactions T={T1, …, Tn} is

a partial order 𝐻𝑡
𝑐 = Hc(T) = {∑T, ≺H} where

∑T = i ∑i , for i = 1, 2, …, n

≺H i ≺Ti
, for i = 1, 2, …, n

For any two conflicting operations Oij, Okl  ∑T, either Oij

≺H Okl or Okl ≺H Oij

Concurrencia, conflictos y schedules
Formalization of History

Given three transactions

T1: Read(x) T2: Write(x) T3:Read(x)

Write(x) Write(y) Read(y)

Commit Read(z) Read(z)

Commit Commit

H1={W2(x),R1(x), R3(x),W1(x),C1,W2(y),R3(y),R2(z),C2,R3(z),C3}

Concurrencia, conflictos y schedules
Formalization of History

A possible schedule is given as the DAG

C1

R3(x)R1(x) W2(x)

W1(x) W2(y) R3(y)

R3(z)R2(z)

C2 C3

Concurrencia, conflictos y schedules
Schedule: definition

A schedule is a prefix of a complete schedule such
that only some of the operations and only some of
the ordering relationships are included

T1: Read(x) T2: Write(x) T3: Read(x)

Write(x) Write(y) Read(y)

Commit Read(z) Read(z)

Commit Commit

Concurrencia, conflictos y schedules
Schedule: definition

C1

R3(x)R1(x) W2(x)

W1(x) W2(y) R3(y)

R3(z)R2(z)

C2 C3

A complete history 𝐻𝑐 for the transactions 𝑇1, 𝑇2, 𝑇3

Concurrencia, conflictos y schedules
Schedule: definition

R1(x) R3(x)W2(x)

W2(y) R3(y)

R3(z)R2(z)

A history 𝐻 for the transactions 𝑇1, 𝑇2, 𝑇3

Concurrencia, conflictos y schedules
Serial history

 All the actions of a transaction occur consecutively

 No interleaving of transaction operations

 The serial execution of a set of transactions
maintains the consistency of the database

 If each transaction is consistent (obeys integrity
rules), then the database is guaranteed to be
consistent at the end of executing a serial history

Concurrencia, conflictos y schedules
Serial history

T1: Read(x) T2: Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

𝑇2 → 𝑇1 → 𝑇3 𝑇2 ≺𝐻 𝑇1 ≺𝐻 𝑇3

Concurrencia, conflictos y schedules
equivalent histories

 Equivalent histories

Histories: 𝐻1 and 𝐻2
Set of transactions: 𝑇

𝐻1 and 𝐻2 are equivalent if they have the same effect on
the database

 Formal definition

Two histories, 𝐻1 and 𝐻2, defined over the same set of
transactions 𝑇, are said to be equivalent if for each pair of
conflicting operations 𝑂𝑖𝑗 and 𝑂𝑘𝑙 (𝑖 ≠ 𝑘), whenever

𝑂𝑖𝑗 ≺𝐻1 𝑂𝑘𝑙, then 𝑂𝑖𝑗 ≺𝐻2 𝑂𝑘𝑙

Concurrencia, conflictos y schedules
Serializable history

 Transactions execute concurrently, but the net effect of the
resulting history upon the database is equivalent to some
serial history

 Equivalent with respect to what?

 Conflict equivalence: the relative order of execution of the
conflicting operations belonging to unaborted transactions in two
histories are the same

 Conflicting operations: two incompatible operations (e.g., Read
and Write) conflict if they both access the same data item

 Incompatible operations of each transaction is assumed to conflict; do not
change their execution orders

 If two operations from two different transactions conflict, the
corresponding transactions are also said to conflict

Concurrencia, conflictos y schedules
H’ is conflict equivalent to H

Concurrencia, conflictos y schedules
Serializable history

Concurrencia, conflictos y schedules
Serializable history

T1: Read(x) T2: Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

The following are not conflict equivalent

Hs={W2(x),W2(y),R2(z),R1(x),W1(x),R3(x),R3(y),R3(z)}

H1={W2(x),R1(x), R3(x),W1(x),W2(y),R3(y),R2(z),R3(z)}

The following are conflict equivalent; therefore H2 is serializable

Hs={W2(x),W2(y),R2(z),R1(x),W1(x),R3(x),R3(y),R3(z)}

H2={W2(x),R1(x),W1(x),R3(x),W2(y),R3(y),R2(z),R3(z)}

Algoritmos para el control de la concurrencia
classification of concurrency control algorithms

Algoritmos para el control de la concurrencia
Locking-Based Algorithms

 Transactions indicate their intentions by requesting locks
from the scheduler (called lock manager)

 Types of locks

 read lock (rl) [also called shared lock]

 write lock (wl) [also called exclusive lock]

 Transaction 𝑇𝑖
 𝑟𝑙𝑖 𝑋

 𝑤𝑙𝑖(𝑋)

 Compatible modes
Two lock modes are compatible if two transactions that access the same
date item can obtain these locks on that data item at the same time

Algoritmos para el control de la concurrencia
Locking-Based Algorithms

 Read locks and write locks conflict (because Read
and Write operations are incompatible

rl wl

rl yes no

wl no no

 Locking works nicely to allow concurrent
processing of transactions

Algoritmos para el control de la concurrencia
Locking-Based Algorithms

Scheduler = lock manager (LM)

Algoritmos para el control de la concurrencia
Locking-Based Algorithms

To generate serializable histories, the locking and releasing
operations of transactions also need to be coordinated

𝑙𝑟𝑖(𝑧): indicates
the release of the
Lock on z that
Transaction 𝑇𝑖 holds

Algoritmos para el control de la concurrencia
Locking-Based Algorithms

 Is 𝐻 a serializable history?

 No

 Problem with 𝐻
It permits transactions to interfere with one another, resulting
in the loss of isolation and atomicity

Locking-Based Algorithms
Two-Phase Locking (2PL)

 The two-phase locking rule states that no
transaction should request a lock after it releases
one of its locks

 A transaction should not release a lock until it is
certain that it will not request another lock

 2PL algorithm execute transactions in two phases

 Each transaction has a growing phase, where is obtains
locks and access data items, and

 A shrinking phase, during which it releases locks

Locking-Based Algorithms
Two-Phase Locking (2PL)

 A transaction locks an object before using it

 When an object is locked by another transaction,
the requesting transaction must wait

 When a transaction releases a lock, it may not
request another lock

Locking-Based Algorithms
Two-Phase Locking (2PL)

Obtain lock

Release lock

Lock point

Phase 1 Phase 2

BEGIN END

N
o

. o
f

lo
ck

s

Locking-Based Algorithms
Two-Phase Locking (2PL): implementation problems

1. The lock manager has to know that the transaction has
obtained all its locks and will not need to lock another data
item

2. The lock manager needs to know that the transaction no longer
needs to access the data item in question, so that the lock can
be released

3. If the transaction aborts after it releases a lock, it may cause
other transactions that may have accessed the unlocked data
item to abort as well – cascading aborts

⟹ strict two-phase locking: releases all the locks together when the
transaction terminates (commits or aborts)

Locking-Based Algorithms
Strict 2PL

Hold locks until the end.

Obtain lock

Release lock

BEGIN END
Transaction
duration

period of
data item
use

N
o

. o
f

lo
ck

s

Locking-Based Algorithms
Centralized 2PL (C2PL)

 The 2PL algorithm can be extended to the distributed
DBMS environment

 There is only one 2PL scheduler in the distributed system

 Lock requests are issued to the central scheduler

 This means that only one of the sites has a lock manager;
the transaction managers at the other sites communicate
with it rather than with their own lock managers

Locking-Based Algorithms
C2PL

Data Processors at
participating sites Coordinating TM Central Site TM

Algoritmos para el control de la concurrencia
Timestamp-based concurrency control algorithms

 They do not attempt to maintain serializability by mutual
exclusion

 They select a serialization order and execute transactions
accordingly

 To establish this ordering, the transaction manager assigns
each transation 𝑇𝑖 a unique timestamps, 𝑡𝑠(𝑇𝑖), at its
initiation

 Timestamp?

 A simple identifier that serves to identify each transaction uniquely
and is used for ordering

 Properties: uniqueness, monotonicity

Algoritmos para el control de la concurrencia
Timestamp-based concurrency control algorithms

Methods to assign timestamps

 Use a global (system-wide) monotonically
increasing counter

Problem: the maintenance of global counters

 Each site autonomously assigns timestamps based
on its local counter

 (local counter value, site identifier)

 If each system can access its own system clock, it is
possible to use system clock values instead of counter
values

Algoritmos para el control de la concurrencia
TO Rule

Given two conflicting operations 𝑂𝑖𝑗 and 𝑂𝑘𝑙
belonging, respectively, to transactions 𝑇𝑖 and 𝑇𝑘 , 𝑂𝑖𝑗 is

executed before 𝑂𝑘𝑙 if and only if 𝑡𝑠(𝑇𝑖) < 𝑡𝑠(𝑇𝑘)

𝑇𝑖: older transaction

𝑇𝑘: younger transaction

A timestamps ordering scheduler is guaranteed to
generate serializable histories

Algoritmos para el control de la concurrencia
Timestamp Ordering

Transaction Ti is assigned a globally unique
timestamp ts(Ti)

Transaction manager attaches the timestamp to all
operations issued by the transaction

Each data item is assigned a write timestamp (wts)
and a read timestamp (rts):

 rts(x) = largest timestamp of any read on x

 wts(x) = largest timestamp of any write on x

Conflicting operations are resolved by timestamp
order

Algoritmos para el control de la concurrencia
Basic Timestamp Ordering Algorithm

 A transaction one of whose operations is rejected by a scheduler
is restarted by the transaction manager with a new timestamp

 This ensures that the transaction has a chance to execute in its
next try

 Since the transactions never wait while they hold access rights to
data items, the basic TO algorithm never causes deadlocks

 The penalty of deadlock freedom is potential restart of a
transaction numerous times

 There is a alternative to the basic TO algorithm that reduces the
number of restarts

Algoritmos para el control de la concurrencia
Basic Timestamp Ordering Algorithm

Algoritmos para el control de la concurrencia
Strict Timestamp Ordering Algorithm

Algoritmos para el control de la concurrencia
Timestamp Ordering: Basic TO Scheduler Algorithm

for Ri(x) for Wi(x)

if ts(Ti) < wts(x) if ts(Ti) < rts(x) and ts(Ti) < wts(x)

then reject Ri(x) then reject Wi(x)

else accept Ri(x) else accept Wi(x)

rts(x)  ts(Ti) wts(x)  ts(Ti)

Algoritmos para el control de la concurrencia
Deadlock

 A deadlock can occur because transactions wait for one another

 A deadlock situation is a set of requests that can never be granted

by the consistency control mechanism

 A transaction is deadlocked if it is blocked and will remain

blocked until there is intervention

 Locking-based CC algorithms may cause deadlocks

 TO-based algorithms that involve waiting may cause deadlocks

 Wait-For Graph (WFG)

 If transaction Ti waits for another transaction Tj to release a lock on an

entity, then Ti → Tj in WFG

Algoritmos para el control de la concurrencia
Deadlock

Ti Tj

Deadlock
Deadlock Management: methods

 Ignore
Let the application programmer deal with it, or restart the system

 Prevention
 Guaranteeing that deadlocks can never occur in the first place

 Check transaction when it is initiated

 Data items accessed: predeclared, pb: difficult task

 Requires no run time support

 Avoidance
 Detecting potential deadlocks in advance and taking action to insure that deadlock

will not occur

 Simple approach: order the resources and access them in that order

 Requires no run time support

 Detection and Recovery
 Allowing deadlocks to form and then finding and breaking them. As in the

avoidance scheme

 requires run time support

Deadlock
Deadlock Management: Deadlock Prevention

 All resources which may be needed by a transaction must be
predeclared

 The system must guarantee that none of the resources will be needed by an
ongoing transaction

 Resources must only be reserved, but not necessarily allocated a priori

 Unsuitability of the scheme in database environment

 Suitable for systems that have no provisions for undoing processes

 Evaluation

 Reduced concurrency due to preallocation

 Evaluating whether an allocation is safe leads to added overhead

– Difficult to determine (partial order)

+ No transaction rollback or restart is involved

Deadlock
Deadlock Avoidance

 Transactions are not required to request resources a priori

 Transactions are allowed to proceed unless a requested
resource is unavailable

 In case of conflict, transactions may be allowed to wait for a
fixed time interval

 Order either the data items or the sites and always request
locks in that order

 More attractive than prevention in a database environment

Deadlock
Deadlock Avoidance – Wait-Die Algorithm

 If Ti requests a lock on a data item which is already
locked by Tj, then Ti is permitted to wait iff
ts(Ti)<ts(Tj)

 If ts(Ti)>ts(Tj), then Ti is aborted and restarted with
the same timestamp

 if ts(Ti)<ts(Tj) then Ti waits else Ti dies

 non-preemptive: Ti never preempts Tj

 prefers younger transactions

Deadlock
Deadlock Avoidance – Wound-Wait Algorithm

 If Ti requests a lock on a data item which is already
locked by Tj, then Ti is permitted to wait iff
ts(Ti)>ts(Tj)

 If ts(Ti)<ts(Tj), then Tj is aborted and the lock is
granted to Ti

 if ts(Ti)<ts(Tj) then Tj is wounded else Ti waits

 preemptive: Ti preempts Tj if it is younger

 prefers older transactions

Main memory

Administración de la recuperación local
arquitectura

Secondary
storage

Stable
database

Read Write
Write Read

Local Recovery
Manager

Database Buffer
Manager

Fetch,
Flush Database

buffers
(Volatile

Database)

Stable
database

Page: unit of storage and acces of the stable database

Administración de la recuperación local
recovery information

 System failures the volatile database is lost

 Recovery information: the information that the DBMS
maintains about its state at the time of the failure in order
to able to bring the database to the state that it was when
the failure ocurred

 The recovery information that the system maintains is
dependent on the method of executing updates

 In-place updating

 Out-of-place updating

Administración de la recuperación local
arquitectura

 In-place update

 Each update causes a change in one or more data values
on pages in the database buffers

 Database log

 The most common update technique

 Out-of-place update

Each update causes the new value(s) of data item(s) to be
stored separate from the old value(s)

Administración de la recuperación local
in-place update recovery information

Database log

Every action of a transaction must not only perform the action, but
must also write a log record to an append-only file

New
stable database

state

Database
Log

Update
Operation

Old
stable database

Administración de la recuperación local
logging

The log contains information used by the recovery
process to restore the consistency of a system. This
information may include

 transaction identifier

 type of operation (action)

 items accessed by the transaction to perform the
action

 old value (state) of item (before image)

 new value (state) of item (after image)

…

Administración de la recuperación local
why logging?

Upon recovery:

 all of T1's effects should be reflected in the database (REDO if
necessary due to a failure)

 none of T2's effects should be reflected in the database (UNDO if
necessary)

Administración de la recuperación local
REDO Protocol

Database
Log

REDO
Old

stable database
state

New
stable database

state

Administración de la recuperación local
REDO Protocol

 REDO'ing an action means performing it again

 The REDO operation uses the log information and
performs the action that might have been done
before, or not done due to failures

 The REDO operation generates the new image

Administración de la recuperación local
UNDO Protocol

New
stable database

state

Database
Log

UNDO
Old

stable database
state

Administración de la recuperación local
UNDO Protocol

 UNDO'ing an action means to restore the object to
its before image

 The UNDO operation uses the log information and
restores the old value of the object

Administración de la recuperación local
When to write log records into stable store

Assume a transaction T updates a page P

 Fortunate case
 System writes P in stable database

 System updates stable log for this update

 SYSTEM FAILURE OCCURS!... (before T commits)

We can recover (undo) by restoring P to its old state by using
the log

 Unfortunate case
 System writes P in stable database

 SYSTEM FAILURE OCCURS!... (before stable log is updated)

We cannot recover from this failure because there is no log
record to restore the old value

 Solution: Write-Ahead Log (WAL) protocol

Administración de la recuperación local
Write-Ahead Log protocol

 Notice:

 If a system crashes before a transaction is committed, then all the
operations must be undone. Only need the before images (undo
portion of the log)

 Once a transaction is committed, some of its actions might have to be
redone. Need the after images (redo portion of the log)

 WAL protocol:

 Before a stable database is updated, the undo portion of the log
should be written to the stable log

 When a transaction commits, the redo portion of the log must be
written to stable log prior to the updating of the stable database

Administración de la recuperación local
logging interface

Administración de la recuperación local
out-of-place update recovery information

 Shadowing

 When an update occurs, don't change the old page, but create a shadow page
with the new values and write it into the stable database

 Update the access paths so that subsequent accesses are to the new shadow
page

 The old page retained for recovery

 Differential files

 For each file 𝐹 maintain

 a read only part 𝐹𝑅

 a differential file consisting of insertions part 𝐷𝐹+ and deletions part 𝐷𝐹−

 Thus,𝐹 = 𝐹𝑅 ∪ 𝐷𝐹+ − 𝐷𝐹−

 Updates treated as delete old value, insert new value

 Periodically, the differential file needs to be merged with the read-only base
file

Administración de la recuperación local
execution of commands

Commands to consider:

begin_transaction

read

write

commit

abort

recover

Independent of execution
strategy for LRM

Administración de la recuperación local
execution strategies

 Dependent upon

 Can the buffer manager decide to write some of the buffer pages being
accessed by a transaction into stable storage or does it wait for LRM to
instruct it?

 fix/no-fix decision

 Does the LRM force the buffer manager to write certain buffer pages into
stable database at the end of a transaction's execution?

 flush/no-flush decision

 Possible execution strategies:

 no-fix/no-flush  redo/undo algorithm

 no-fix/flush undo/no-redo algorithm

 fix/no-flush

 fix/flush

Administración de la recuperación local
execution strategies: No-fix/No-flush

 Abort

 Buffer manager may have written some of the updated pages into
stable database

 LRM performs transaction undo (or partial undo)

 Commit

 LRM writes an “end_of_transaction” record into the log.

 Recover

 For those transactions that have both a “begin_transaction” and an
“end_of_transaction” record in the log, a partial redo is initiated by
LRM

 For those transactions that only have a “begin_transaction” in the
log, a global undo is executed by LRM

Administración de la recuperación local
execution strategies: No-fix/Flush (undo/no-redo)

 Abort

 Buffer manager may have written some of the updated pages into
stable database

 LRM performs transaction undo (or partial undo)

 Commit

 LRM issues a flush command to the buffer manager for all updated
pages

 LRM writes an “end_of_transaction” record into the log

 Recover

 No need to perform redo since all the updated page are written into
the stable database at the commit point

 Perform global undo: the recovery action initiated by the LRM

Administración de la recuperación local
execution strategies: Fix/No-flush

 The LRM controls the writing of the volatile database pages into a stable
storage

 The key is not to permit the buffer manager to write any updated volatile
database page into the stable database until at least the transaction
commit point: fix command (modified version of the fetch command)

 Abort
 None of the updated pages have been written into stable database

 Release the fixed pages

 Commit
 LRM writes an “end_of_transaction” record into the log

 LRM sends an unfix command to the buffer manager for all pages that were
previously fixed

 Recover
 Perform partial redo

 No need to perform global undo

Administración de la recuperación local
execution strategies: Fix/Flush (no-undo/no-redo)

 The LRM forces the buffer manager to write the updated volatile database
pages into the stable database at the commit point – not before and not
after

 Abort
 None of the updated pages have been written into stable database

 Release the fixed pages

 Commit (the following have to be done atomically)
 LRM issues a flush command to the buffer manager for all updated pages

 LRM sends an unfix command to the buffer manager for all pages that were
previously fixed

 LRM writes an “end_of_transaction” record into the log

 Recover
 No need to do anything

Administración de la recuperación local
checkpoints

 Simplifies the task of determining actions of
transactions that need to be undone or redone
when a failure occurs

 A checkpoint record contains a list of active
transactions

 Steps:

 Write a begin_checkpoint record into the log

 Collect the checkpoint data into the stable storage

 Write an end_checkpoint record into the log

Administración de la recuperación local
media failures – full architecture

Deferred update Immediate update

 NO-UNDO/REDO  UNDO/REDO

Deferred update and immediate update

Fin

